Глава 38. Общее уравнение плоскости. Уравнение плоскости, проходящей через данную точку и имеющей данный нормальный вектор

В декартовых координатах каждая плоскость определяется уравнением первой степени и каждое уравнение первой степени определяет плоскость.

Всякий (не равный нулю) вектор, перпендикулярный к данной плоскости, называется ее нормальным вектором. Уравнение

(1)

определяет плоскость, проходящую через точку и имеющей нормальный вектор .

Раскрывая в уравнении (1) скобки и обозначая число буквой D, представим его в виде

.

Это уравнение называется общим уравнением плоскости.

Текст издания: © Д.В.Клетеник "Сборник задач по аналитической геометрии". М., Наука, Физматлит, 1998. SpyLOG
Решение задач: © Кирилл Кравченко, http://a-geometry.narod.ru/.
Все права принадлежат мне, если не оговорено иное ;-)

Сайт управляется системой uCoz