Глава 33. Смешанное произведение трех векторов
Тройкой векторов называются три вектора, если указано, какой из них считается первым, какой вторым и какой третьим. Тройку векторов записывают в порядке нумерации; например, запись , , означает, что вектор считается первым, - вторым, - третьим.
Тройка некомпланарных векторов , , называется правой, если составляющие ее векторы, будучи приведены к общему началу, располагаются в порядке нумерации аналогично тому, как расположены большой, указательный и средний пальцы правой руки. Если векторы , , расположены аналогично тому, как расположены большой, указательный и средний пальцы левой руки, то тройка этих векторов называется левой.
Смешанным произведенем трех векторов , , называется число, равное векторному произведению , умноженному скалярно на вектор , то есть .
Имеет место тождество, ввиду чего для обозначения смешанного произведения употребляется более простой символ . Таким образом,
, .
Смешанное произведение равно объему параллелепипеда, построенного на векторах , , , взятого со знаком плюс, если тройка правая, и со знаком минус, если эта тройка левая. Если векторы , , компланарны (и только в этом случае), смешанное произведение равно нулю; иначе говоря, равенство
есть необходимое и достаточное условие компланарности векторов , , .
Если векторы , , заданы своими координатами:
, , ,
то смешанное произведение определяется формулой
.
Напомним, что система координатных осей предполагется правой (вместе с тем является правой и тройка векторов , , ).
Текст издания: © Д.В.Клетеник "Сборник задач по аналитической геометрии". М., Наука, Физматлит, 1998. Решение задач: © Кирилл Кравченко, http://a-geometry.narod.ru/.
Все права принадлежат мне, если не оговорено иное ;-)