Глава 2. Декартовы прямоугольные координаты на плоскости
Д
екартова прямоугольная система координат определяется заданием линейной единицы для измерения длин и двух взаимно перпендикулярных осей, занумерованных в каком-нибудь порядке.Точка пересечения осей называется началом координат, а сами оси - координатными осями. Первая из координатных осей называется осью абсцисс, вторая - осью ординат.
Начало координат обозначается буквой О, ось абсцисс - символом Ох, ось ординат - символом Оу.
Координатами произвольной точки М в заданной системе называют числа
,
( см. рис. 1), где
и
суть проекции точки М на оси Ох и Оу,
обозначает величину отрезка
оси абсцисс,
- величину отрезка
оси ординат. Число х называется абсциссой точки М, число у - ординатой этой же точки. Символ М(х; у) обозначает, что точка М имеет абсциссой число х, а ординатой число у.
Обе координатные оси вместе разделяют плоскость на четыре четверти, которые нумеруют по следующему правилу: первой координатной четвертью называется та, которая лежит одновременно в правой и в верхней полуплоскости, второй - лежащая в левой и в верхней полуплоскости, третьей - лежащая в левой и в нижней полуплоскости, четвертой - лежащая в правой и в нижней полуплоскости.
Текст издания: © Д.В.Клетеник "Сборник задач по аналитической геометрии". М., Наука, Физматлит, 1998. Решение задач: © Кирилл Кравченко, http://a-geometry.narod.ru/.
Все права принадлежат мне, если не оговорено иное ;-)