Глава 9. Понятие уравнения линии. Задание линии при помощи уравнения
Равенство вида F(x; y)=0 называется уравнением с двумя переменными x, y, если оно справедливо не для всяких пар чисел x, y. Говорят, что два числа , удовлетворяют некоторому уравнению вида F(x, y)=0, если при подстановке этих чисел вместо переменных x и y в уравнение его левая часть обращается в нуль.Уравнением данной линии (в назначенной системе координат) называется такое уравнение с двумя переменными, которому удовлетворяют координаты каждой точки, лежащей на этой линии, и не удовлетворяют координаты каждой точки, не лежащей на ней.
В дальнейшем вместо выражения «дано уравнение линии F(x; y)=0» мы часто будем говорить короче: «дана линия F(x; y)=0».
Если даны уравнения двух линий F(x,y)=0 и Ф(x, y)=0, то совместное решение системы F(x,y)=0, Ф(x, y)=0 дает все точки их пересечения. Точнее, каждая пара чисел, являющаяся совместным решением этой системы, определяет одну из точек пересечения.
Текст издания: | © Д.В.Клетеник "Сборник задач по аналитической геометрии". М., Наука, Физматлит, 1998. | |
Решение задач: | © Кирилл Кравченко,
http://a-geometry.narod.ru/. Все права принадлежат мне, если не оговорено иное ;-) |