Глава 15. Уравнение пучка прямых

Глава 15. Уравнение пучка прямых

Совокупность прямых, проходящих через некоторую точку S, называется пучком прямых с центром в S.

Если и - уравнения двух прямых, пересекающихся в точке S, то уравнение

, (1)

где , - какие угодно числа, не равные одновременно нулю, определяет прямую, также проходящую через точку S.

Более того, в уравнении (1) числа , всегда возможно подобрать так, чтобы оно определило любую (заранее назначенную) прямую, проходящую через точку S, иначе говоря, любую прямую пучка с центром S. Поэтому уравнение вида (1) называется уравнением пучка (с центром в S).

Если , то, деля обе части уравнения (1) на и полагая , получим

. (2)

Этим уравнением можно определить любую прямую пучка с центром S, кроме той, которая соответствует , то есть кроме прямой

.

353 Найти центр пучка прямых, данного уравнением .
354 Найти уравнение прямой, принадлежащей пучку прямых и
354.1 Проходящей через точку А(3; -1);
354.2 Проходящей через начало координат;
354.3 Параллельной оси Ox;
354.4 Параллельной оси Oy;
354.5 Параллельной прямой ;
354.6 Перпендикулярной к прямой .
355 Составить уравнение прямой, проходящей через точку пересечения прямых , и отсекающий на оси ординат отрезок b=-3. Решить задачу, не определяя координат точки пересечения данных прямых.
356 Составить уравнение прямой, которая проходит через точку пересечения прямых , и делит пополам отрезок, ограниченный точками M1(5; -6), M2(-1; -4). Решить задачу, не вычисляя координат точки пересечения данных прямых.
357 Дано уравнение пучка прямых . Написать уравнение прямой этого пучка, проходящей через центр масс однородной треугольной пластинки, вершины которой суть точки A(-1; 2), B(4; -4), C(6; -1).
358 Дано уравнение пучка прямых . Найти прямую этого пука, проходящую через середину отрезка прямой , заключенного между прямыми , .
359 Даны уравнения сторон треугольника , , . Не определяя координат его вершин, составить уравнения высот этого трегоульника.
360 Составить уравнение прямой, проходящей через точку пересечения прямых , под углом 450 к прямой . Решить задачу, не вычисляя координат точки пересечения данных прямых.
361 В треугольнике АВС даны уравнения высоты AN: , высоты BN: и стороны АВ: . Не определяя координат вершин и точки пересечения высот треугольника, составить уравнение двух других сторон и третьей высоты.
362 Составить уравнения сторон треугольника АВС, зная одну его вершину А(2; -1), а также уравнения высоты и биссектрисы , проведенных из одной вершины. Решить задачу, не вычисляя координат вершин В и С.
363 Дано уравнение пучка прямых . Найти прямые этого пучка, отрезки которых, заключенные между прямыми , , равны .
364 Дано уравнение пучка прямых . Доказать, что прямая принадлежит этому пучку.
365 Дано уравнение пучка прямых . Доказать, что прямая не принадлежит этому пучку.
366 Дано уравнение пучка прямых . Найти, при каком значении С прямая будет принадлежать этому пучку.
367 Дано уравнение пучка прямых . Найти, при каких значениях a прямая не будет принадлежать этому пучку.
368 Центр пучка прямых является вершиной квадрата, диагональ которого лежит на прямой . Составить уравнения сторон и второй диагонали этого квадрата.
369 Дано уравнение пучка прямых . Найти прямую этого пучка, отсекающую на координатных осях отличные от нуля отрезки равной величины (считая от начала координат).
370 Дано уравнение пучка прямых . Найти прямые этого пучка, отсекающие на координатных осях отрезки равной длины (считая от начала координат).
371 Дано уравнение пучка прямых . Найти прямые этого пучка, отсекающие от координатных углов треугольники с площадью, равной 9.
372 Дано уравнение пучка прямых . Доказать, что среди прямых этого пучка существует только одна прямая, отстоящая от точки Р(2; -3) на расстояние . Написать уравнение этой прямой.
373 Дано уравнение пучка прямых . Доказать, что среди прямых этого пучка нет прямой, отстоящей от точки Р(3; -1) на расстояние d=3.
374 Составить уравнение прямой, проходящей через точку пересечения прямых , и отстоящей от точки С(-1; 2) на расстояние d=5. Решить задачу, не вычисляя точки пересечения даных прямых.
375 Дано уравнение пучка прямых . Написать уравнения прямых этого пучка, которые вместе с прямыми , образуют равнобедренные треугольники.
376 Составить уравнение прямой, которая проходит через точку пересечения прямых , на одинаковых расстояниях от точек А(3; -2) и В(-1; 6). Решить задачу, не вычисляя координат точки пересечения данных прямых.
377 Даны уравнения двух пучков прямых , . Не определяя их центров, составить уравнение прямой, принадлежащей обоим пучкам.
378 Стороны АВ, ВС, CD, DA четырехугольника ABCD заданы соответственно уравнениями , , , . Не определяя координат вершин этого четырехугольника, составить уравнения его диагоналей AC и BD.
379 Центр пучка прямых является одной из вершин треугольника, две высоты которого даны уравнениями , . Составить уравнения сторон этого треугольника.

Текст издания: © Д.В.Клетенник "Сборник задач по аналитической геометрии". М., Наука, Физматлит, 1998
Решение задач: © 2004-2013, Кирилл Кравченко, http://a-geometry.narod.ru/, http://kirill-kravchenko.narod.ru/
Яндекс.Метрика