Глава 30. Линейные операции над векторами
Суммой двух векторов и называется вектор, который идет из начала вектора в конец вектора при условии, что вектор приложен к концу вектора (правильно треугольника). Построение суммы изображено на рис. 1.
Наряду с правилом треугольника часто пользуются (равносильным ему) правилом параллелограма: если векторы и приведены к общему началу и на них построен параллелограмм, то сумма есть вектор, совпадающий с диагональю этого паралеллограмма, идущей из общего начала и (рис. 2). Отсюда сразу следует, что .
Сложение многих векторов производится при помощи последовательного применения правила треугольника (см. рис. 3, где изображено построение суммы четырех векторов , , , ).
Разность двух векторов и называется вектор, который в сумме с вектором составляет вектор . Если два вектора и приведены к общему началу, то разность их есть вектор, идущий из конца («вычитаемого») к концу («уменьшаемого»). Два вектора равной длины, лежащие на одной прямой и направленные в противоположные стороны, называются взаимно обратными: если один из них обозначен символом , то другой обозначается символом . Легко видеть, что . Таким образом, построение разности равносильно прибавлению к «уменьшаемому» вектора, обратного «вычитаемого».
Произведение (или также ) вектора на число называется вектор, модуль которого равен произведению модуля вектора на модуль числа ; он параллелен вектору или лежит с ним на одной прямой и направлен так же, как вектор , если - число положительное, и противоположно вектору , если - число отрицательное.
Сложение векторов и умножение вектора на число называются линейными операциями над векторами.
Имеют место следующие две основные теоремы о проекциях векторов:
1). Проекция суммы векторов на какую-нибудь ось равна сумме ее проекций на эту же ось:
2). При умножении вектора на число его проекция умножается на то же число:
.
В частности, если
, ,
то
,
и
.
Если , то для любого числа
.
Векторы, лежащие на одной прямой или на параллельных прямых, называются коллинеарными. Признаком коллинеарности двух векторов
, ,
является пропорциональность их координат:
.
Тройка векторов , , называется координатным базисом, если эти векторы удовлетворяют следующим условиям:
1). Вектор лежит на оси Ох, вектор - на оси Оу, вектор - на оси Oz;
2). Каждый из векторов , , направлен по своей оси в положительную сторону;
3). Векторы , , единичные, то есть , , .
Каким бы ни был вектор , он всегда может быть разложен по базису , , , то есть может быть представлен в виде
;
коэффициенты этого разложения являются координатами вектора (то есть X, Y, Z суть проекции вектора на координатные оси).
761 По данным векторам и построить каждый из следующих векторов: 1). , 2). , 3). , 4). . 762 Даны =13, =19 и =24. Вычислить . 763 Даны =11, =23 и =30. Определить . 764 Векторы и взаимно перпендикулярны, причем =5, =12. Определить и . 765 Векторы и образуют угол =600, причем=5 и =8. Определить и . 766 Векторы и образуют угол =1200, причем =3 и =5. Определить и . 767 Какому условию должны удовлетворять векторы и , чтобы имели место следующие соотношения: 767.1 ; 767.2 ; 767.3 . 768 Какому условию должны удовлетворять векторы и , чтобы вектор делил пополам угол между векторами и . 769 По данным векторам и построить каждый из следующих векторов: 769.1 ; 769.2 ; 769.3 ; 769.4 . 770 В треугольнике АВС вектор и вектор . Построить каждый из следующих векторов. Принимая в качестве масштабной единицы , построить также векторы: 770.1 ; 770.2 ; 770.3 ; 770.4 ; 770.5 ; 770.6 . 771 Точка О является центром масс треугольника АВС. Доказать, что . 772 В правильном пятиугольнике ABCDE заданы векторы, совпадающие с его ребрами: , , , , . Построить векторы: 772.1 ; 772.2 ; 772.3 . 773 В параллелепипеде ABCDA’B’C’D’ (рис.) заданы векторы, совпадающие с его ребрами: , , . Построить каждый из следующих векторов: 773.1 ; 773.2 ;
773.3 ; 773.4 ; 773.5 . 774 Три силы , , , приложенные к одной точке, имеют взаимно перпендикулярные направления. Определить величину их равнодействующей , если известно, что =2Н, =10Н, =11Н. 775 Даны два вектора ={3; -2; 6}, ={-2; 1; 0}. Определить проекции на координатные оси следующих векторов: 775.1 ; 775.2 ; 775.3 ; 775.4 ; 775.5 ; 775.6 . 776 Проверить коллинеарность векторов ={2; -1; 3} и ={-6; 3; -9}. Установить, какой из них длиннее другого и во сколько раз, как они направлены – в одну или в противоположные стороны. 777 Определить, при каких значениях , векторы и коллинеарны. 778 Проверить, что четыре точки A(3; -1; 2), B(1; 2; -1), C(2; 2; -7), D(3; -5; 3) служат вершинами трапеции. 779 Даны точки A(-1; 5; -10}, B(5; -7; 8), C(2; 2; -7), D(5; -4; 2). Проверить, что векторы и коллинеарны, установить, какой из них длиннее другого и во сколько раз, как они направлены – в одну или в противоположные стороны. 780 Найти орт вектора ={6; -2; -3}. 781 Найти орт вектора ={3; 4; -12}. 782 Определить модули суммы и разности векторов ={3; -5; 8} и ={-1; 1; -4}. 783 Дано разложение вектора по базису , , : . Определить разложение по этому же базису вектора , параллельного вектору и противоположного с ним направления, при условии, что =75. 784 Два вектора ={2; -3; 6} и ={-1; 2; -2} приложены к одной точке. Определить координаты вектора направленного по биссектрисе угла между векторами и , при условии, что . 785 Векторы ={2; 6; -4} и ={4; 2; -2} совпадают со сторонами теругольника АВС. Определить координаты векторов, приложенных к вершинам треугольника и совпадающими с его медианами AM, BN, CP. 786 Доказать, что если и - какие угодно неколлинеарные векторы, то всякий вектор, лежащих в их плоскости, может быть представлен в виде . Доказать, что числа и однозначно определяются векторами , и . 787 На плоскостиданы два вектора ={2; -3}, ={1; 2}. Найи разложение вектора ={9; 4} по базису , . 788 На плоскости даны три вектора ={3; -2}, ={-2; 1}, ={7; -4}. Определить разложение каждого из этих трех векторов, принимая в качестве базиса два других. 789 Даны три вектора ={3; -1}, ={1; -2}, ={-1; 7}. Определить разложение вектора по базису , . 790 Принимая в качестве базиса векторы и , совпадающие со сторонами треугольника АВС, опреедлить разложение векторов, приложенных в вершинах треугольника и совпадающие с его медианами. 791 На плоскости даны етыре точки A(1; -2), B(2; 1), C(3; 2), D(-2; 3). Определить разложение векторов , , и , принимая в качестве базиса векторы и . 792 Доказать, что если , , - какие угодно некомпланарные векторы, то всякий вектор пространства может быть представлен в виде . Доказать, что числа , , однознчно определяются векторами , , , . (Представление вектора в виде называется разложением его по базису , , . Числа , , называются коэффициентами этого разложения. 793 Даны три вектора ={3; -2; 1}, ={-1; 1; -2}, ={2; 1; -3}. Найти разложение вектора ={11; -6; 5} по базису , , . 794 Даны четыре вектора ={2; 1; 0}, ={1; -2; 2}, ={2; 2; -1}, ={3; 7; -7}. Определить разложение каждого из этих четырех векторов, принимая в качестве базиса три остальных.
Текст издания: © Д.В.Клетеник "Сборник задач по аналитической геометрии". М., Наука, Физматлит, 1998
Решение задач: © 2004-2013, Кирилл Кравченко, http://a-geometry.narod.ru/, http://kirill-kravchenko.narod.ru/