Глава 30. Линейные операции над векторами

Глава 30. Линейные операции над векторами

Суммой двух векторов и называется вектор, который идет из начала вектора в конец вектора при условии, что вектор приложен к концу вектора (правильно треугольника). Построение суммы изображено на рис. 1.

Наряду с правилом треугольника часто пользуются (равносильным ему) правилом параллелограма: если векторы и приведены к общему началу и на них построен параллелограмм, то сумма есть вектор, совпадающий с диагональю этого паралеллограмма, идущей из общего начала и (рис. 2). Отсюда сразу следует, что .

Сложение многих векторов производится при помощи последовательного применения правила треугольника (см. рис. 3, где изображено построение суммы четырех векторов , , , ).

Разность двух векторов и называется вектор, который в сумме с вектором составляет вектор . Если два вектора и приведены к общему началу, то разность их есть вектор, идущий из конца («вычитаемого») к концу («уменьшаемого»). Два вектора равной длины, лежащие на одной прямой и направленные в противоположные стороны, называются взаимно обратными: если один из них обозначен символом , то другой обозначается символом . Легко видеть, что . Таким образом, построение разности равносильно прибавлению к «уменьшаемому» вектора, обратного «вычитаемого».

Произведение (или также ) вектора на число называется вектор, модуль которого равен произведению модуля вектора на модуль числа ; он параллелен вектору или лежит с ним на одной прямой и направлен так же, как вектор , если - число положительное, и противоположно вектору , если - число отрицательное.

Сложение векторов и умножение вектора на число называются линейными операциями над векторами.

Имеют место следующие две основные теоремы о проекциях векторов:

1). Проекция суммы векторов на какую-нибудь ось равна сумме ее проекций на эту же ось:

2). При умножении вектора на число его проекция умножается на то же число:

.

В частности, если

, ,

то

,

и

.

Если , то для любого числа

.

Векторы, лежащие на одной прямой или на параллельных прямых, называются коллинеарными. Признаком коллинеарности двух векторов

, ,

является пропорциональность их координат:

.

Тройка векторов , , называется координатным базисом, если эти векторы удовлетворяют следующим условиям:

1). Вектор лежит на оси Ох, вектор - на оси Оу, вектор - на оси Oz;

2). Каждый из векторов , , направлен по своей оси в положительную сторону;

3). Векторы , , единичные, то есть , , .

Каким бы ни был вектор , он всегда может быть разложен по базису , , , то есть может быть представлен в виде

;

коэффициенты этого разложения являются координатами вектора (то есть X, Y, Z суть проекции вектора на координатные оси).

761 По данным векторам и построить каждый из следующих векторов: 1). , 2). , 3). , 4). .
762 Даны =13, =19 и =24. Вычислить .
763 Даны =11, =23 и =30. Определить .
764 Векторы и взаимно перпендикулярны, причем =5, =12. Определить и .
765 Векторы и образуют угол =600, причем=5 и =8. Определить и .
766 Векторы и образуют угол =1200, причем =3 и =5. Определить и .
767 Какому условию должны удовлетворять векторы и , чтобы имели место следующие соотношения:
767.1 ;
767.2 ;
767.3 .
768 Какому условию должны удовлетворять векторы и , чтобы вектор делил пополам угол между векторами и .
769 По данным векторам и построить каждый из следующих векторов:
769.1 ;
769.2 ;
769.3 ;
769.4 .
770 В треугольнике АВС вектор и вектор . Построить каждый из следующих векторов. Принимая в качестве масштабной единицы , построить также векторы:
770.1 ;
770.2 ;
770.3 ;
770.4 ;
770.5 ;
770.6 .
771 Точка О является центром масс треугольника АВС. Доказать, что .
772 В правильном пятиугольнике ABCDE заданы векторы, совпадающие с его ребрами: , , , , . Построить векторы:
772.1 ;
772.2  ;
772.3 .
773 В параллелепипеде ABCDA’B’C’D’ (рис.) заданы векторы, совпадающие с его ребрами: , , . Построить каждый из следующих векторов:

773.1 ;
773.2

;

773.3 ;
773.4 ;
773.5 .
774 Три силы , , , приложенные к одной точке, имеют взаимно перпендикулярные направления. Определить величину их равнодействующей , если известно, что =2Н, =10Н, =11Н.
775 Даны два вектора ={3; -2; 6}, ={-2; 1; 0}. Определить проекции на координатные оси следующих векторов:
775.1 ;
775.2 ;
775.3 ;
775.4 ;
775.5 ;
775.6 .
776 Проверить коллинеарность векторов ={2; -1; 3} и ={-6; 3; -9}. Установить, какой из них длиннее другого и во сколько раз, как они направлены – в одну или в противоположные стороны.
777 Определить, при каких значениях , векторы и коллинеарны.
778 Проверить, что четыре точки A(3; -1; 2), B(1; 2; -1), C(2; 2; -7), D(3; -5; 3) служат вершинами трапеции.
779 Даны точки A(-1; 5; -10}, B(5; -7; 8), C(2; 2; -7), D(5; -4; 2). Проверить, что векторы и коллинеарны, установить, какой из них длиннее другого и во сколько раз, как они направлены – в одну или в противоположные стороны.
780 Найти орт вектора ={6; -2; -3}.
781 Найти орт вектора ={3; 4; -12}.
782 Определить модули суммы и разности векторов ={3; -5; 8} и ={-1; 1; -4}.
783 Дано разложение вектора по базису , , : . Определить разложение по этому же базису вектора , параллельного вектору и противоположного с ним направления, при условии, что =75.
784 Два вектора ={2; -3; 6} и ={-1; 2; -2} приложены к одной точке. Определить координаты вектора направленного по биссектрисе угла между векторами и , при условии, что .
785 Векторы ={2; 6; -4} и ={4; 2; -2} совпадают со сторонами теругольника АВС. Определить координаты векторов, приложенных к вершинам треугольника и совпадающими с его медианами AM, BN, CP.
786 Доказать, что если и - какие угодно неколлинеарные векторы, то всякий вектор, лежащих в их плоскости, может быть представлен в виде . Доказать, что числа и однозначно определяются векторами , и .
787 На плоскостиданы два вектора ={2; -3}, ={1; 2}. Найи разложение вектора ={9; 4} по базису , .
788 На плоскости даны три вектора ={3; -2}, ={-2; 1}, ={7; -4}. Определить разложение каждого из этих трех векторов, принимая в качестве базиса два других.
789 Даны три вектора ={3; -1}, ={1; -2}, ={-1; 7}. Определить разложение вектора по базису , .
790 Принимая в качестве базиса векторы и , совпадающие со сторонами треугольника АВС, опреедлить разложение векторов, приложенных в вершинах треугольника и совпадающие с его медианами.
791 На плоскости даны етыре точки A(1; -2), B(2; 1), C(3; 2), D(-2; 3). Определить разложение векторов , , и , принимая в качестве базиса векторы и .
792 Доказать, что если , , - какие угодно некомпланарные векторы, то всякий вектор пространства может быть представлен в виде . Доказать, что числа , , однознчно определяются векторами , , , . (Представление вектора в виде называется разложением его по базису , , . Числа , , называются коэффициентами этого разложения.
793 Даны три вектора ={3; -2; 1}, ={-1; 1; -2}, ={2; 1; -3}. Найти разложение вектора ={11; -6; 5} по базису , , .
794 Даны четыре вектора ={2; 1; 0}, ={1; -2; 2}, ={2; 2; -1}, ={3; 7; -7}. Определить разложение каждого из этих четырех векторов, принимая в качестве базиса три остальных.

Текст издания: © Д.В.Клетеник "Сборник задач по аналитической геометрии". М., Наука, Физматлит, 1998
Решение задач: © 2004-2013, Кирилл Кравченко, http://a-geometry.narod.ru/, http://kirill-kravchenko.narod.ru/
Яндекс.Метрика